Exemple 1

Une poutre librement supportée d'une section représentée dans le dessin ci-dessous est chargée d'une force P = 100 kN. Vérifiez les valeurs des contraintes au niveau des points critiques de la section dangereuse. Utilisez l'hypothèse HMH dans les calculs. Tracez les diagrammes des moments de flexion et des efforts tranchants ainsi que la répartition des contraintes le long de la hauteur de la section. Les contraintes admissibles sont respectivement \(k_r=120\ MPa, k_c=80\ MPa\).

single-task-hero-img

Solution

Nous vous encourageons à regarder la solution de cet exemple (comme les autres) sur notre chaîne YouTube. J'explique étape par étape comment résoudre cet exercice. Regarder cette vidéo vous aidera également à comprendre les autres exemples sur notre site.

\begin{aligned} &z_1=50\ mm &A_1=2000\ mm^2\\ &z_2=110\ mm &A_2=2000\ mm^2\\ &z_c=\frac{z_1\cdot A_1+z_2\cdot A_2}{A_1+A_2} &z_c=80\ mm\\ &I_{yc}=\frac{20\cdot 100^3}{12}+2000\cdot (50 80)^2+\frac{100\cdot 20^3}{12}+2000\cdot (110 80)^2\\ &I_{zc}=5333333\ cm^4=5,33\cdot 10^{6}\ m^4\\ \end{aligned}

Contraintes normales

\begin{aligned} &\sigma=\frac{M}{Iy}\cdot z \\ &\sigma=\frac{-7,5\cdot 10^3}{5,33\cdot 10^{-6}}\cdot z=-1,407\cdot 10^9\cdot z\\ &\sigma_1=112,56\ MPa\\ &\sigma_3=0\ MPa\\ &\sigma_2=-28,14\ MPa\\ &\sigma_4=-56,28\ MPa\\ \end{aligned}

Contraintes tangentes

\begin{aligned} &\tau=\frac{T⋅S}{Iy⋅b}\\ &\tau=\frac{75\cdot 10^3}{5,33\cdot 10^{-6}}\cdot \frac{S}{b}=1,407\cdot 10^{10}\cdot \frac{S}{b}\\ \\ \\ \\ &L'inertie statique\\ &S_1=S_4=0\\ &S_3=100⋅20⋅30+20⋅20⋅10=64000\ cm^3=64⋅10^{-6}\ m^3\\ &S_2=100⋅20⋅30=60000\ cm^3=60⋅10^{-6}\ m^3\\ \\ &\tau_3=1,407⋅10^9⋅\frac{64⋅10^{-6}}{0,02}=45,03\ MPa\\ &\tau_2 bis=1,407⋅10^{10}⋅\frac{60⋅10^{-6}}{0,02}=42,21\ MPa\\ &\tau_2 prim=8,44\ MPa\\ \end{aligned}

Valeurs des contraintes aux points critiques de la section dangereuse.

\begin{aligned} &\sigma_{red}^{HMH}=\sqrt{\sigma^2+3⋅\tau^2}\\ &\sigma_{red}^{HMH}(2)=\sqrt{28,14^2+3⋅42,21^2}=78,34\ MPa\\ &\sigma_{red}^{HMH}(3)=\sqrt{0^2+3⋅45,03^2}=78\ MPa\\ &\sigma_{red}^{HMH}(1)=\sqrt{112,56^2+3⋅0^2}=112,56\ MPa\\ \end{aligned}

Source:

Stanisław Wolny, Adam Siemieniec, Wytrzymałość materialów część 1, Wydawnictwo AGH, Kraków 2002, Przykład 9.38 s. 382