Solution
Classic Version
1. Marking characteristic points and reactions on supports
 
2. Calculation of reactions using equilibrium equations
\begin{aligned} &\sum{X}=0\\ &H_A=0\\ \end{aligned} \begin{aligned} &\sum{M_{A}}=0\\ &10\cdot 2+15\cdot 5-V_{D}\cdot 8=0\\ &V_{D}=11,875 \ kN\\ \end{aligned} \begin{aligned} &\sum{M_{D}}=0\\ &V_{A}\cdot 8-15\cdot 3-10\cdot 6=0\\ &V_{A}=13,125 \ kN\\ \end{aligned} \begin{aligned} &\sum{Y}=0\\ &V_{A}+V_{D}-10-15=0\\ &L=P\\ \end{aligned}3. Expanding the internal force equations in individual sections of variability:
a) Section AB 
 \begin{aligned}
&Q_{AB}=V_{A}=13.125 kN\\
&M_{AB}=V_{A}\cdot x\\
&M_{A}(0)=0\\
&M_{B}(2)=26.25 kNm\\
\end{aligned}
\begin{aligned}
&Q_{AB}=V_{A}=13.125 kN\\
&M_{AB}=V_{A}\cdot x\\
&M_{A}(0)=0\\
&M_{B}(2)=26.25 kNm\\
\end{aligned}
b) Section BC 
 \begin{aligned}
&Q_{BC}=V_{A}-10=3.125\\
&M_{BC}=V_{A}\cdot x-10\cdot (x-2)\\
&M_{B}(2)=26.25 kNm\\
&M_{C}(5)=35.625 kNm\\
\end{aligned}
\begin{aligned}
&Q_{BC}=V_{A}-10=3.125\\
&M_{BC}=V_{A}\cdot x-10\cdot (x-2)\\
&M_{B}(2)=26.25 kNm\\
&M_{C}(5)=35.625 kNm\\
\end{aligned}
c) Section DC 
 \begin{aligned}
&Q_{DC}=-V_{D}\\
&M_{DC}=V_{D}\cdot x\\
&M_{D(0)}=0\\
&M_{C(3)}=35.625 kNm\\
\end{aligned}
\begin{aligned}
&Q_{DC}=-V_{D}\\
&M_{DC}=V_{D}\cdot x\\
&M_{D(0)}=0\\
&M_{C(3)}=35.625 kNm\\
\end{aligned}
4. Final plots
 
                
                
            
              
                
                If you have any questions, comments, or think you have found a mistake in this solution, please send us a message at kontakt@edupanda.pl.
                
                
              
            