Example 1

Two-stage rod has been permanently fixed at end A and loaded with forces P and 2P as shown in the diagram. Calculate the diameter of both rods, knowing the allowable stresses in compression and tension. Draw diagrams of internal forces, normal stresses, and elongations and displacements of the rod. Data: \(P=10 kN, E=2.1\cdot 10^{5} MPa, a=1 m, k_{r}=60 MPa, k_{c}=80 MPa\)

single-task-hero-img

Solution


Calculation of reactions
\begin{aligned} &\sum X=0 \\ &R_{A}+2 P-P=0 \\ &R_{A}=-P \\ \end{aligned} Recording normal forces on characteristic sections
\begin{aligned} &N_{1}=-P=-10 kN \\ &N_{2}=-P=-10 kN \\ &N_{3}=-P+2 P=P=10 kN \\ \end{aligned} Strength condition
\begin{aligned} &\sigma=\left|\frac{N}{A}\right| \leq k_{r}, k_{c} \end{aligned} Compression \begin{aligned} &\frac{10 \cdot 10^{3}}{A} \leq 80 \cdot 10^{6} \\ &A \geq \frac{10 \cdot 10^{3}}{80 \cdot 10^{6}} \\ &A \geq 1.25 \times 10^{-4}\left[\mathrm{~m}^{2}\right] \end{aligned}

Tension

\begin{aligned} &\frac{10 \cdot 10^3}{2 A} \leq 60 \cdot 10^{6} \\ &2 A \geq \frac{10 \cdot 10^{3}}{60 \cdot 10^{6}} \\ &A \geq 8.33 \times 10^{-5}=0.833 \times 10^{-4}\left[\mathrm{~m}^{2}\right] \end{aligned} The tension condition decides. Dimensioning the diameter: \begin{aligned} &A \geq 1.25 \times 10^{-4} \\ &\frac{\pi d^{2}}{4} \geq 1.25 \times 10^{-4} \\ &d \geq \sqrt{\frac{4 \times 1.25 \times 10^{-4}}{\pi}} \\ &d \geq 0.0126 \\ &d=0.013 \ [m]\\ \end{aligned} Cross-sectional area at the dimensioned diameter: \begin{aligned} &A=\frac{\pi \times 0.013^{2}}{4}=1.327 \times 10^{-4} \end{aligned} Stresses on characteristic sections: \begin{aligned} \sigma_{1} &=\frac{N_{1}}{A}=-\frac{10 \times 10^{3}}{1.327 \times 10^{-4}}=-75.36 \mathrm{MPa} \\ \sigma_{2} &=\frac{N_{2}}{2 A}=-\frac{10 \times 10^{3}}{2 \times 1.327 \times 10^{-4}}=-37.68 \mathrm{MPa} \\ \sigma_{3} &=\frac{N_{3}}{2 A}=\frac{10 \times 10^{3}}{2 \times 1.327 \times 10^{-4}}=37.68 \mathrm{MPa} \end{aligned} Elongations \begin{aligned} &\Delta l=\frac{N \times l}{E \times A} \\ &\Delta l_{1}=\frac{N_{1} \times l_{1}}{E \times A}=\frac{-10 \times 10^{3} \times 2 \times 1}{2.1 \times 10^{11} \times 1.327 \times 10^{-4}}=-7.18 \times 10^{-4}[\mathrm{~m}]=-7.18 \times 10^{-4}[\mathrm{~mm}]=-0.718[\mathrm{~mm}] \\ &\Delta l_{1}=\frac{N_{1} \times l_{1}}{E \times 2 A}=\frac{-10 \times 10^{3} \times 1 \times 1}{2.1 \times 10^{11} \times 2 \times 1.327 \times 10^{-4}}=-1.79 \times 10^{-4}[\mathrm{~m}]=-0.179[\mathrm{~mm}] \\ &\Delta l_{1}=\frac{N_{1} \times l_{1}}{E \times 2 A}=\frac{10 \times 10^{3} \times 2 \times 1}{2.1 \times 10^{11} \times 2 \times 1.327 \times 10^{-4}}=1.79 \times 10^{-4}[\mathrm{~m}]=0.179[\mathrm{~mm}] \end{aligned} Summary: \begin{aligned} &N_{1}=10 kN \\ &N_{2}=-10 kN \\ &N_{3}=10 kN \\ &\sigma_{1}=-75.36 \mathrm{MPa} \\ &\sigma_{2}=-37.68 \mathrm{MPa} \\ &\sigma_{3}=37.68 \mathrm{MPa} \\ &\Delta l_{3}=0.179 \mathrm{~mm} \\ &\Delta l_{2}=-0.179 \mathrm{~mm} \\ &\Delta l_{1}=-0.718 \mathrm{~mm} \\ \end{aligned} Displacements \begin{aligned} &u_{III}=\Delta l_{3}=0.179 \mathrm{~mm} \\ &u_{II}=\Delta l_{3}+\Delta l_{2}=0.179-0.179=0 \mathrm{~mm} \\ &u_I=\Delta l_{3}+\Delta l_{2}+\Delta l_{1}=-0.718 \mathrm{~mm} \end{aligned} Graphs