Rozwiązanie
1
$$
\alpha:=90 \mathrm{deg}+45 \mathrm{deg}=135 \mathrm{deg} \quad s:=\sin (\alpha)=0.7071 \quad c:=\cos (\alpha)=-0.7071
$$
$$
k_{1}:=\frac{A \cdot E}{a} \cdot\left[\begin{array}{cccc}
c^{2} & c \cdot s & -c^{2} & -c \cdot s \\
c \cdot s & s^{2} & -c \cdot s & -s^{2} \\
-c^{2} & -c \cdot s & c^{2} & c \cdot s \\
-c \cdot s & -s^{2} & c \cdot s & s^{2}
\end{array}\right]=\left[\begin{array}{rrrr}
1.8 & -1.8 & -1.8 & 1.8 \\
-1.8 & 1.8 & 1.8 & -1.8 \\
-1.8 & 1.8 & 1.8 & -1.8 \\
1.8 & -1.8 & -1.8 & 1.8
\end{array}\right] 10^{4}
$$
$$
2
$$
$$
\alpha:=0 \text { deg } \quad s:=\sin (\alpha)=0
$$
$$
c:=\cos (\alpha)=1
$$
$$
k_{2}:=\frac{A \cdot E}{a \cdot \sqrt{2}} \cdot\left[\begin{array}{cccc}
c^{2} & c \cdot s & -c^{2} & -c \cdot s \\
c \cdot s & s^{2} & -c \cdot s & -s^{2} \\
-c^{2} & -c \cdot s & c^{2} & c \cdot s \\
-c \cdot s & -s^{2} & c \cdot s & s^{2}
\end{array}\right]=\left[\begin{array}{cccc}
2.5456 & 0 & -2.5456 & 0 \\
0 & 0 & 0 & 0 \\
-2.5456 & 0 & 2.5456 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] 10^{4}
$$
3
$$
\alpha:=90 \mathrm{deg} \quad s:=\sin (\alpha)=1
$$
$$
c:=\cos (\alpha)=0
$$
$$
k_{3}:=\frac{A \cdot E}{a} \cdot\left[\begin{array}{cccc}
c^{2} & c \cdot s & -c^{2} & -c \cdot s \\
c \cdot s & s^{2} & -c \cdot s & -s^{2} \\
-c^{2} & -c \cdot s & c^{2} & c \cdot s \\
-c \cdot s & -s^{2} & c \cdot s & s^{2}
\end{array}\right]=\left[\begin{array}{r|rrr}
0 & 0 & 0 & 0 \\
0 & 36000 & 0 & -36000 \\
0 & 0 & 0 & 0 \\
0 & -36000 & 0 & 36000
\end{array}\right]
$$
3
$$
\alpha:=0 \mathrm{deg} \quad s:=\sin (\alpha)=0 \quad c:=\cos (\alpha)=1
$$
$$
k_{4}:=\frac{A \cdot E}{a} \cdot\left[\begin{array}{cccc}
c^{2} & c \cdot s & -c^{2} & -c \cdot s \\
c \cdot s & s^{2} & -c \cdot s & -s^{2} \\
-c^{2} & -c \cdot s & c^{2} & c \cdot s \\
-c \cdot s & -s^{2} & c \cdot s & s^{2}
\end{array}\right]=\left[\begin{array}{cccc}
3.6 & 0 & -3.6 & 0 \\
0 & 0 & 0 & 0 \\
-3.6 & 0 & 3.6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] 10^{4}
$$
5
$$
\alpha:=90 d e g+45 \operatorname{deg} \quad s:=\sin (\alpha)=0.7071
$$
$$
k_{5}:=\frac{A \cdot E}{a} \cdot\left[\begin{array}{cccc}
c^{2} & c \cdot s & -c^{2} & -c \cdot s \\
c \cdot s & s^{2} & -c \cdot s & -s^{2} \\
-c^{2} & -c \cdot s & c^{2} & c \cdot s \\
-c \cdot s & -s^{2} & c \cdot s & s^{2}
\end{array}\right]=\left[\begin{array}{rrrr}
1.8 & -1.8 & -1.8 & 1.8 \\
-1.8 & 1.8 & 1.8 & -1.8 \\
-1.8 & 1.8 & 1.8 & -1.8 \\
1.8 & -1.8 & -1.8 & 1.8
\end{array}\right] 10^{4}
$$
\begin{gathered}
T_{1}:=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0
\end{array}\right] \\
T_{2}:=\left[\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \\
T_{3}:=\left[\begin{array}{llllllll}
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \\
T_{5}:=\left[\begin{array}{llllllll}
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
\begin{aligned}
&K:=T_{1}^{\mathrm{T}} \cdot k_{1} \cdot T_{1}+T_{2}{ }^{\mathrm{T}} \cdot k_{2} \cdot T_{2}+T_{3}{ }^{\mathrm{T}} \cdot k_{3} \cdot T_{3}+T_{4}{ }^{\mathrm{T}} \cdot k_{4} \cdot T_{4}+T_{5}{ }^{\mathrm{T}} \cdot k_{5} \cdot T_{5}\\
&K=\left[\begin{array}{rrrrrrrr}
43455.8441 & -18000 & -18000 & 18000 & -25455.8441 & 0 & 0 & 0 \\
-18000 & 18000 & 18000 & -18000 & 0 & 0 & 0 & 0 \\
-18000 & 18000 & 54000 & -18000 & 0 & 0 & -36000 & 0 \\
18000 & -18000 & -18000 & 54000 & 0 & -36000 & 0 & 0 \\
-25455.8441 & 0 & 0 & 0 & 43455.8441 & -18000 & -18000 & 18000 \\
0 & 0 & 0 & -36000 & -18000 & 54000 & 18000 & -18000 \\
0 & 0 & -36000 & 0 & -18000 & 18000 & 54000 & -18000 \\
0 & 0 & 0 & 0 & 18000 & -18000 & -18000 & 18000
\end{array}\right]
\end{aligned}
$$
\begin{aligned}
&u:=\left[\begin{array}{c}
-0.526 \\
0 \\
0 \\
0 \\
-0.712 \\
-0.147 \\
-0.147 \\
0
\end{array}\right] \cdot 10^{-3} \\
&u:=\left[\begin{array}{c}
u_{2} \\
u_{3} \\
u_{6} \\
u_{7}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-1.47 \cdot 10^{-1} \\
0
\end{array}\right] 10^{-3} \\
&f:=u^{\mathrm{T}} \cdot k_{4}=\left[\begin{array}{lll}
5.292 & 0 & -5.292 & 0
\end{array}\right]
\end{aligned}
$$
ściskanie $\quad 5.292 \mathrm{kN}$
Jeżeli masz jakieś pytania, uwagi lub wydaje Ci się, że znalazłeś błąd w tym rozwiązaniu, napisz proszę do nas wiadomość na kontakt@edupanda.pl lub skontaktuj się z nami przez nasz profil na FB: