Example 1

Determine the frequency of vibrations of the rod system. Graphically represent the shapes of the system's natural vibrations.

single-task-hero-img

Solution

Degree of static indeterminacy

SSN=3-3=0

Number of degrees of dynamic freedom

LSSD=1
\( m_1=m \)















$$ \begin{aligned} &\Sigma \mathrm{M}_{\mathrm{B}}=0 \\ &-1 \cdot 2+\mathrm{V}_{\mathrm{A}} \cdot 4=0 \quad \mathrm{~V}_{\mathrm{A}}:=0.5 \\ &\Sigma \mathrm{y}=0 \\ &\mathrm{~V}_{\mathrm{A}}-1+\mathrm{V}_{\mathrm{B}}=0 \quad \mathrm{~V}_{\mathrm{B}}:=0.5 \\ &\Sigma \mathrm{x}=0 \\ &\mathrm{H}_{\mathrm{B}}:=0 \end{aligned} $$






Dynamic delta $$ \delta_{11}:=\frac{1}{\mathrm{EI}} \cdot\left(\frac{1}{3} \cdot 1 \cdot 1 \cdot 2+\frac{1}{3} \cdot 1 \cdot 1 \cdot 2\right)=1.333 \cdot \frac{1}{\mathrm{EI}} $$ Vibration frequency $$ \begin{array}{r} \omega:=\sqrt{\frac{1}{m_1 \cdot \delta_{11}}} \quad \omega:=\sqrt{\frac{1}{m \cdot \frac{4}{3 E I}}} \\ \omega:=0.866 \sqrt{\frac{E I}{m}} \end{array} $$

Vibration modes