- E - Young's modulus,
- J - Moment of inertia of the beam's cross-section with respect to the horizontal axis.
- the cuts in all segments must be measured from the same point
we adopt one coordinate system for the simple beam, we cannot write, for example, part of the function from one side and part from the other side of the beam
- in the case of a continuous load, it cannot be interrupted
if such a case occurs, the continuous load should be extended to the end of the beam, simultaneously adding the same load with the opposite sign (counter-load)
- all newly added terms in the expression for the bending Moment must contain the factor \( (x- l_{i-1}) \),
where:
\(l_{i-1}\) denotes the coordinate of the beginning of the i-th segment of the beam
- in the case of a concentrated Moment M – we multiply the Moment by the arm of action to the power of 0
- integration should be performed without expanding expressions in parentheses
the constants of integration apply to the entire beam (for all segments)
If the coordinates \(l_{\mathrm{i}}\) define the position of concentrated forces \(P_{\mathrm{i}}\)
or the beginnings of continuous loads \(q_{\mathrm{i}}\),
then expressions of the type \(P_i\left(x-l_i\right)\) or \(q_i \frac{\left(x-l_i\right)^2}{2}\) are integrated according to the scheme
We calculate the support reactions
\begin{aligned} &\sum{M_B}=0 -20\cdot 3+30\cdot 1.5+10+15\cdot 6-R_C\cdot 3=0 R_A=28.33kN\\ &\sum{M_C}=0 -20\cdot 6+R_B\cdot 3-30\cdot 1.5+10+15\cdot 3=0 R_B=36.67kN\\ &\sum{P_iY}=0 -20+R_B-30+R_C-15=0 L=P\\ \end{aligned}
We write the Moment function from the left side.
The function can also be written from the right side. We encourage you to check this variant, calculate the sought displacement, and compare the results.
\begin{aligned}
&M_g(x)=-20x+R_B(x-3)-\frac{1}{2}q(x-3)^2+R_C(x-6)+10(x-6)^0+\frac{1}{2}q(x-6)^2\\
&EJ\cdot w"=-M_g(x)=20x-R_B(x-3)+5(x-3)^2- 28.33(x-6)-10(x-6)^0-5(x-6)^2\\
&EJ\cdot w'=20\frac{x^2}{2}-36.67\frac{(x-3)^2}{2}+5\frac{(x-3)^3}{3}-28.33\frac{(x-6)^2}{2}-10(x-6)-5\frac{(x-6)^3}{3}+C\\
&EJ\cdot w=20\frac{x^3}{6}-36.67\frac{(x-3)^3}{6}+5\frac{(x-3)^4}{12}-28.33\frac{(x-6)^3}{6}-10\frac{(x-6)^2}{2}-5\frac{(x-6)^4}{12}+Cx+D\\
\end{aligned}
Boundary conditions
\begin{aligned} &w(x=3)=0 \Rightarrow 90+3C+D=0\\ &w(x=6)=0 \Rightarrow 588.735+6C+D=0\\ &C=-166,245\\ &D=408.735\\ \end{aligned}We calculate the deflection at point A.
If we adopted the coordinate system at the left end of the beam, then point A has the coordinate x=0.
Therefore \begin{aligned} &w_A(x=0)=\frac{1}{EI}\cdot (D)\\ \end{aligned} \begin{aligned} &w_A=\frac{1}{EI}\cdot (408.735)\\ \end{aligned}